A Process for Combining Object Oriented
and Structured Analysis and Design

Dale M. Rickman
Raytheon Systems Company
1768 Business Center Drive

Reston, VA 20190

(703) 759-1216
dmrickman@raytheon.com

Abstract. While Object Oriented (OO)
methodologies have some advantages over structured
methods, OO is not as mature as structured analysis
and design and does not contain all of the tools/
techniques needed to support a large system design.
By using both OO models and Structured models
(e.g., data flow diagrams, control flow diagrams, state
transition tables) during systems analysis, a more
complete understanding of the system requirements
can be developed. During the design process, the
software architecture components can be designed and
built either as OO modules or structured modules
depending upon the requirements of the module.
Since both views of the system (OO and structured)
have been built during the analysis phase, there is no
“translation/conversion” from one methodology to the
other. By combining models and approaches from
both OO and structured methods in one process we
can take advantage of the strengths of both
methodologies.

Advantages and Disadvantages of Object
Oriented Methods. Object Oriented (0OO)
methodologies have two main strengths. First, they
do an excellent job of supporting COTS and reuse.
OO is basically a bottom up approach which supports
viewing the system as a set of components (objects)
that can be pieced together to form the system. The
OO approach inherently makes each software object a
stand alone component that can be reused not only
within this problem domain, but also in completely
different problem domains.

The other main advantage of OO is the focus on data
relationships. To develop a large system, the data
relationships must be well understood. Traditionally,
Entity-Relationship (ER) diagrams have been used to
model data relationships. An OO model provides all
of the insight of an ER diagram and contains
additional information related to the methods to be
performed on the data.

A weakness of OO is that OO methods only build
functional models within the objects. There is no
place in the methodology to build a complete
functional model. While this is not a problem for
some applications (e.g., building a software toolset),
for large systems, it can lead to missed requirements.
“Use cases” address this problem, but since all use
cases cannot be developed, it is still possible to miss
requirements until late in the development cycle.
Another weakness of the OO methodology is in
system modeling for performance and sizing. The
OO models do not easily describe the
communications between objects. Indeed, a basic
concept of OO is that the object need not know who
is invoking it. While this leads to a flexible design,
performance modeling cannot be handled readily.
While there have been a few cases of successful large
systems designed using OO, success is the exception
rather than the rule. The successful projects are due
to having OO experts who, through past experience -
often painfully gained, can intuitively identify the
right OO components in the system. The
methodology itself does not provide support for
identifying which objects will generate an optimal
system design. Specifically, there is no single
diagram that shows all of the interfaces between
objects. Since coupling is a major factor in system
complexity, not having this information makes
architecture component selection a hit or miss
proposition.

Advantages and Disadvantages of Structured
Methods. Structured methods have been around
longer than OO methods and in general they are more
mature for large systems design. Also, most
customers understand structured methods better than
OO methods. Since one of the main reasons of
modeling a system is for communication with
customers and users, there is an advantage in
providing structured models for information exchange.

In fact, specifications are typically in the form of a
Statement of Work and Requirement Specification.
Therefore, the system to be built must be understood
in terms of requirements (functions the system must
perform). This naturally leads to a structured
analysis, at least at the top level. Specifically
structured methods (functional decomposition) provide
a natural vehicle for discussing, modeling and
deriving the requirements of the system.

The main advantage of structured analysis is in the
development of a complete system requirements
model. Having a complete requirements model on
one diagram helps ensure that all requirements are
allocated to architecture components.

The primary (fatal) flaw with structured methods is
that they do not readily support the use of COTS or
reusable modules. The top down process works well
for new development, but does not provide the
mechanisms for “designing in” the use of COTS or
existing components. The top down process of
functional decomposition does not lead to a set of
requirements which map well to existing
components. When the requirements don’t map
cleanly, there are two choices: either don’t use the
existing components or force fit the requirements to
the existing components and “somehow” deal with
the requirements which are only partially covered by
the existing components. Neither of these approaches
lead to a good systems design.

Hatley-Pirbhai (Hatley 1988), A Systems
Engineering Methodology. Hatley-Pirbhai (H-
P) is an extension of structured methods that address
the short falls of the standard structured
methodologies. HP includes architecture models,
information (data) models, control flow models and
supports bottoms up as well as top down design.
H-P by itself is an excellent systems engineering
methodology for designing large systems.

H-P includes three requirements models and two
architecture models. All models are tied together via
a data dictionary. These models can be thought of as
a tool kit. Not all models must be built for all
systems. Models serve two purposes: 1) to help the
designers understand a complex system so that it can
be designed and built; and 2) to be used as a
communications tool to help explain the system to
others including the customer and users. Via these
models the stakeholders' can come to agreement on
exactly what the system will do and how it will do it.

! Stakeholders include all people who have a vested
interest in the system (e.g., customer, users and
developers).

The requirements models, see Figure 1, includes: a
process model which captures the functions the
system must perform, a control model which
describes the control of the system, and an
information model which describes the data
relationships within the system.

PROCESS
MODEL

INFORMATION CONTROL
MODEL MODEL

Figure 1, Hatley-Pirbhai Requirements
Models

The architecture models, see Figure 2, include a
Architecture Flow Model which shows data flows
between architecture components, and an Architecture
Interconnect Model which shows how the architecture
components are physically connected. The two
architecture models support sizing and performance
modeling. In fact, CACI provides a tool
(VeriSpec/RA) which interprets the Hatley-Pirbhai
models directly and generates a performance model
semi-automatically.

Since all interfaces between components are shown
on the Architecture Flow Model, system coupling is
easily seen. With this approach both module
coupling and functional cohesion are shown on one
diagram greatly aiding in the determination of
“goodness” of the design.

ARCHITECTURE

ARCHITECTURE INTERCONI
DIAGRAM DIAGRAM

ARCHITECTURE
DICTIONARY

ARCHITECTURE
INTERCONNECT
SPECIFICATION

JARCHITECTURE

MODULE
ISPECIFICATION

Figure 2, Hatley-Pirbhai Architecture
Models

Another key concept and real strength of H-P is the
concept of an enhanced requirements model, see
Figure 3. The basic concept is that every time you
make a design decision you potentially add new
derived requirements. For example, if it is decided to
put components that interface to each other in
different computers, you have now added derived
requirements for network communications. The other
type of requirements which show up on the
enhancement requirements model are related to
building a system in a non-perfect world. Examples
of requirements of this type are security, availability
and maintenance. For example, in a perfect world,
components would never fail. In the real world,
components do fail and if the system requirements
call for high availability of a function, redundancy
must be provided in case of failure. These types of
requirements are identified and modeled in the H-P
methodology in the enhanced requirements model.

ENCODE/DECODE
TRANSFORMATIONS

USER INTERFACE PROCESSING

INPUT PROCESSING REQUIREMENTS DUTPUT PROCESSING
MODEL
DECODE LOGICAL ENCODE
TRANSFORMATIONS (TECHNOLOGY TRANSFORMATIONS
INDEPENDENT)
TRANSFORMATIONS

ENCODE/DECODE
TRANSFORMATIONS

MAINTENANCE
& SELFTEST

Figure 3, Enhanced Requirements
Model

The Enhancements are important in reuse designs
because this is where the derived requirements for the
“glue” code needed to link existing components
together are identified, modeled and understood.

The Enhanced Data Flow Diagram (DFD) contains
all high level requirements and all high level
interfaces. A traceability matrix from the
Requirements Specification is made to this model.
The enhanced requirements model is used to allocate
requirements, interfaces, data stores and control to the
architecture components.

Combining Object-Oriented Methodology
into Hatley-Pirbhai. Combining H-P with OO
provides all of the tools needed to design any system.
While H-P as originally developed does not discuss
0O, the H-P methodology inherently supports OO
design and analysis. The OO models are combined
with H-P in several places. First, the OO Class
Model replaces the H-P Information Model. Second,
Use Cases and Collaboration Diagrams are used to
show how the system will operate. Finally, the OO
Class model is used as an architecture model for
software modules during software design. Other OO
diagrams are used, as needed, to design the OO
software.

The Process for combining OO and
Structured Methods. The recommended starting
point is the development of the system context
diagram. This step is important for two reasons.
First, it’s impossible to design a system without
understanding its’ inputs and outputs. Second, by
identifying the external interfaces up front, the
process of coordinating and working out the details of
the external interfaces, often a time consuming and
difficult task, can start immediately.

The second step depends on the system to be
designed, the constraints of the system and the
background of the designers. Below is a list of the
steps for this process. The order of the steps shown
below is typical, but not mandatory.

Analysis and Design Steps’
* Build context diagram
¢ Use functional decomposition to partition
requirements
* Build an OO model to understand data
relationships

% Trades, studies, building prototypes and technology
research are a key part of systems design, but they are
not described here.

* Build a control model to specify control

* Enhance the requirements and control models
to address a non-perfect world and design
decisions

* Group requirements and allocate all
requirements, data stores and control to
architecture components

* Build the architecture flow diagram

* Build the architecture interconnect diagram

* Model the system performance®

¢ TIterate the above steps until a good design
has been created for this level of the
architecture and the models are all consistent
with each other.

Note: It makes no difference where you
start, the key is to make sure that all
models integrate at some point in time.

In this approach, the first appearance of an OO model
is as a replacement for the information model (ER
diagrams) in the H-P requirements model set. The
OO0 model here does not imply (as it does in a strictly
OO methodology) that the objects are architecture
components. At this time, the OO model is used
only as an information model. The OO model is used
to populate the data dictionary and to provide insight
into the data relationships of the system.

The first level architecture for a large system is
typically subsystems (for example, an archive
management subsystem; containing one or more
computers, a robot and multiple readers/writers).

The architecture can be developed using either a
bottom up or top down approach. If there are
components which already exist (COTS, GOTS or
reuse items) and the components are clearly going to
be part of the system design, these should be “taken
as a given” and included in the architecture right
away. The requirements partitioning needs to reflect
that architecture decision. In other words, if only part
of a function (a bubble on a DFD) can be satisfied by
an existing component, the function must be split in
the requirements model so that the requirements not
met by the existing component are clearly identified.
For requirements that cannot be allocated to existing
components, these modules can follow directly from
the requirements model and good engineering practices
(e.g., minimize coupling and maximize functional
cohesion). Typically both top down and bottom up
approaches are needed in any large system.

? The Data Dictionary is populated as each of the
models are being developed.

This approach handles cases where some requirements
cannot be met by existing components via two
separate processes. First, since all requirements
appear on the enhanced DFD, it becomes clear which
requirements are handled by existing components and
which need to be addressed elsewhere. The second
step is to re-look at the enhanced model when
architecture decisions are made. Specifically, when an
existing component is selected as an architecture
component, you reevaluate the requirements to see if
there are any new derived requirements caused by that
architecture decision. Very often, code must be
developed to interface existing components/COTS to
each other.

This process, requirements analysis though
architecture design, is then repeated for each
component of the highest level architecture (i.e., the
subsystems). Each subsystem is treated as a new
system to be designed and the 10 step process repeats.
Note that not all steps have to be performed at all
levels (this is a tool box approach). If the subsystem
is not data driven (e.g., a communications
subsystem), then the OO model may not be needed
for that subsystem.

When the architecture is defined down to the level of
designing software Configuration Items (Cls), a
choice can be made to use OO for that CI or a
structured design.

Reasons for choosing one over the other might be
performance, requirements volatility, or reuse
potential. Modules which do not have clearly defined
requirements or are subject to change (e.g., user
interfaces) are good candidates for OO. Other modules
which require high performance and have clearly
defined requirements (e.g., drivers) may be better
served by a more traditional design.

When it has been determined that a particular software
module is going to be designed using OO, the OO
model is used as the architecture model for that
software component.

OO Designs and Structured Designs are
fundamentally Different. The fundamental
difference between an OO design and a structured
design is how control is handled. In a structured
approach, control is modeled separately from
functions. A good structured design has a single
“smart” controller that performs only control
functions and many worker components that do the
work. This is analogous to military model, where a
commander makes decisions and soldiers follow orders
and perform the work.

In an OO design, control is partitioned into each
object (i.e., each component is designed to stand-

alone). This is a service-oriented approach. To
accomplish a given task, you have to go and get the
services you need from different service suppliers
(i.e., objects).

The structured approach is very efficient. Things get
done quickly and efficiently. The problem with this
approach is that the components are tightly integrated
in this design. While typically, the design is flexible
enough to handle requirement changes within a given
system, the design is not well suited for reuse in a
different domain. On the other hand, the OO design
is very flexible and can be easily reused — but it is not
as efficient.

Therefore, trades need to be performed to determine
which approach to use on each part of the system.
Note that within one system, both approaches can be
used.

Performing both structured and object-
oriented analysis provides a better design.
One major advantage of following this approach is
that regardless of which design (OO or structured) you
end up implementing, you can come up with a much
better solution by looking at the problem from both a
structured approach and an object oriented approach.
For example, by doing structured analysis and design,
you can find ways make an object oriented design
more efficient — without sacrificing flexibility or
reuse. It’s also typically that you can develop a more
flexible/reusable-structured design by seeing how the
system would be implemented using an object-
oriented approach.

Conclusion. Systems engineering has changed
significantly over the last 10 years. In the past we
typically designed and developed large systems from
scratch. Those days are gone. Today systems have
to be built faster, cheaper, and they have to be more
flexible than the systems in the past. To build
today’s systems, we have to rely on COTS and reuse.
This new focus requires us to use new methods and
techniques. =~ Methodologies like object oriented
analysis and design can help with some of the
problems, but also bring new challenges. We need to
be able to blend proven systems design techniques,
like Hatley-Pirbhai, with new reuse based
methodologies. We have to expand our “toolbox” to
include a wide variety of techniques to design these
systems. The process described in this paper provides
a complete set of systems engineering techniques that
can be used to address the challenges of designing
systems today.

References

Hatley, Derek J. and Pirbhai, Imtiaz A., Strategies for
Real-Time System Specification, Dorset House
Publishing, 1988.

Biography. Mr. Rickman has over 20 years of
systems engineering experience related to the design
and development of large information systems. At
present, Mr. Rickman is the Systems Engineering
Process Owner for Raytheon Systems Company in
Reston, VA.

